New methods for measuring tissue iron accumulation and new drugs to remove excessive iron are advancing two of the most challenging areas in the management of thalassemia as well as other transfusion-dependent disorders. Improved survival of patients with thalassemia has given new importance to adult complications such as endocrinopathies and hepatitis that have a major impact on the quality of life. This chapter describes how these changes are redefining the clinical management of thalassemia. In Section I, Dr. Renzo Galanello describes recent advances in iron chelation therapy. Several new chelators are either licensed in some countries, are in clinical trials or are in the late stages of preclinical development. Some of these iron chelators, such as deferiprone (DFP) and ICL670, are orally active. Others, such as hydroxybenzyl-ethylenediamine-diacetic acid (HBED) and starch deferoxamine, require parenteral administration but may be effective with less frequent administration than is currently required for deferoxamine. Chelation therapy employing two chelators offers the possibility of more effective removal of iron without compromising safety or compliance. Other strategies for chelation therapy may take advantage of the ability of particular chelators to remove iron from specific target organs such as the heart and the liver. In Section II, Dr. Dudley Pennell addresses cardiac iron overload, the most frequent cause of death from chronic transfusion therapy. The cardiac complications related to excessive iron may result from long-term iron deposition in vulnerable areas or may be due to the more immediate effects of nontransferrin-bound iron. Cardiac disease is reversible in some patients with intensive iron chelation therapy, but identification of cardiac problems prior to the onset of serious arrhythmias or congestive heart failure has proven difficult. New methods using magnetic resonance imaging (MRI) have recently been developed to assess cardiac iron loading, and studies suggest a clinically useful relationship between the results using these techniques and critical measures of cardiac function. Measurements such as T2* may help guide chelation therapy in individual patients and may also enhance the assessment of new chelators in clinical trials. The use of MRI-based technology also holds promise for wider application of non-invasive assessment of cardiac iron in the management of patients with thalassemia. In Section III, Dr. Melody Cunningham describes some of the important complications of thalassemia that are emerging as patients survive into adulthood. Hepatitis C infection is present in the majority of patients older than 25 years. However, antiviral therapy in patients with thalassemia has been held back by the absence of large clinical trials and concern about ribavirin-induced hemolysis. More aggressive approaches to the treatment of hepatitis C may be particularly valuable because of the additive risks for cirrhosis and hepatocellular carcinoma that are posed by infection and iron overload. Thrombosis is recognized with increasing frequency as a significant complication of thalassemia major and thalassemia intermedia, and pulmonary hypertension is now the focus of intense study. Risk factors for thrombosis such as splenectomy are being identified and new approaches to anticoagulation are being initiated. Pregnancies in women with thalassemia are increasingly common with and without hormonal therapy, and require a better understanding of the risks of iron overload and cardiac disease in the mother and exposure of the fetus to iron chelators. In Section IV, Dr. Elliott Vichinsky describes the dramatic changes in the epidemiology of thalassemia in North America. Hemoglobin E-beta thalassemia is seen with increasing frequency and poses a particular challenge because of the wide variability in clinical severity. Some affected patients may require little or no intervention, while others need chronic transfusion therapy and may be appropriate candidates for hematopoietic stem cell transplantation. Enhancers of fetal hemoglobin production may have a unique role in Hb E-beta thalassemia since a modest increase in hemoglobin level may confer substantial clinical benefits. Alpha thalassemia is also being recognized with increasing frequency in North America, and newborn screening for Hemoglobin Barts in some states is leading to early detection of Hb H disease and Hb H Constant Spring. New data clarify the importance of distinguishing these two disorders because of the increased severity associated with Hb H Constant Spring. The use of intrauterine transfusions to sustain the viability of fetuses with homozygous alpha thalassemia has created a new population of patients with severe thalassemia and has raised new and complex issues in genetic counseling for parents with alpha thalassemia trait.
What is beta thalassemia?
Beta thalassemia is a blood disorder that reduces the production of hemoglobin. Hemoglobin is the iron-containing protein in red blood cells that carries oxygen to cells throughout the body.
In people with beta thalassemia, low levels of hemoglobin lead to a lack of oxygen in many parts of the body. Affected individuals also have a shortage of red blood cells (anemia), which can cause pale skin, weakness, fatigue, and more serious complications. People with beta thalassemia are at an increased risk of developing abnormal blood clots.
Beta thalassemia is classified into two types depending on the severity of symptoms: thalassemia major (also known as Cooley's anemia) and thalassemia intermedia. Of the two types, thalassemia major is more severe.
The signs and symptoms of thalassemia major appear within the first 2 years of life. Children develop life-threatening anemia. They do not gain weight and grow at the expected rate (failure to thrive) and may develop yellowing of the skin and whites of the eyes (jaundice). Affected individuals may have an enlarged spleen, liver, and heart, and their bones may be misshapen. Some adolescents with thalassemia major experience delayed puberty. Many people with thalassemia major have such severe symptoms that they need frequent blood transfusions to replenish their red blood cell supply. Over time, an influx of iron-containing hemoglobin from chronic blood transfusions can lead to a buildup of iron in the body, resulting in liver, heart, and hormone problems.
Thalassemia intermedia is milder than thalassemia major. The signs and symptoms of thalassemia intermedia appear in early childhood or later in life. Affected individuals have mild to moderate anemia and may also have slow growth and bone abnormalities.
How common is beta thalassemia?
Beta thalassemia is a fairly common blood disorder worldwide. Thousands of infants with beta thalassemia are born each year. Beta thalassemia occurs most frequently in people from Mediterranean countries, North Africa, the Middle East, India, Central Asia, and Southeast Asia.
What genes are related to beta thalassemia?
Mutations in the HBB gene cause beta thalassemia. The HBB gene provides instructions for making a protein called beta-globin. Beta-globin is a component (subunit) of hemoglobin. Hemoglobin consists of four protein subunits, typically two subunits of beta-globin and two subunits of another protein called alpha-globin.
Some mutations in the HBB gene prevent the production of any beta-globin. The absence of beta-globin is referred to as beta-zero (B0) thalassemia. Other HBB gene mutations allow some beta-globin to be produced but in reduced amounts. A reduced amount of beta-globin is called beta-plus (B+) thalassemia. Having either B0 or B+ thalassemia does not necessarily predict disease severity, however; people with both types have been diagnosed with thalassemia major and thalassemia intermedia.
A lack of beta-globin leads to a reduced amount of functional hemoglobin. Without sufficient hemoglobin, red blood cells do not develop normally, causing a shortage of mature red blood cells. The low number of mature red blood cells leads to anemia and other associated health problems in people with beta thalassemia.
How do people inherit beta thalassemia?
Thalassemia major and thalassemia intermedia are inherited in an autosomal recessive pattern, which means both copies of the HBB gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. Sometimes, however, people with only one HBB gene mutation in each cell develop mild anemia. These mildly affected people are said to have thalassemia minor.
In a small percentage of families, the HBB gene mutation is inherited in an autosomal dominant manner. In these cases, one copy of the altered gene in each cell is sufficient to cause the signs and symptoms of beta thalassemia.
Where can I find information about diagnosis or management of beta thalassemia?
These resources address the diagnosis or management of beta thalassemia and may include treatment providers.
- Gene Review:
Beta-Thalassemia - Genetic Testing Registry: beta
Thalassemia - Genetic Testing Registry: Beta-thalassemia, dominant inclusion body
type - MedlinePlus Encyclopedia:
Thalassemia
No comments:
Post a Comment